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Abstract

Following our previous discussion and suggestion, the relationship between flow mode evolution and the Rayleigh
number was theoretically investigated. From the simplified governing equations, analysis was conducted by using the
singular theory. The results show that flow patterns of falling liquid films vary with the changing Rayleigh number. This
analysis accounts rationally for the evolving processes of falling liquid films along a heated vertical wall. © 1999 Elsevier

Science Ltd. All rights reserved.
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Nomenclature

g gravity acceleration

L wavelength

n  Ra/Ra,

g heat flux

Ra Rayleigh number, Ra = gpAT,5*/va
Re Reynolds number, Re = 4T /u
t time

t* dimensionless time, * = at/5”
x, z coordinates

x*, z*¥ dimensionless coordinates.

Greek symbols

o thermal diffusivity

p coefficient of volume expansion

I' liquid mass flow rate per unit width

0 average film thickness

AT, average temperature difference between heated
wall and free interface

0 temperature departure

0* dimensionless temperature departure
1 dynamic viscosity

v kinetic viscosity

6 o=0/L

* Corresponding author.

¥ stream function
¥* dimensionless stream function.

1. Introduction

Falling liquid films cause wide concern nowadays for
their high heat transfer capability. Some researches [1-5]
show that falling liquid films can dramatically enhance
heat transfer and have complex flow modes. Unfor-
tunately, it is still difficult to explain the physical mech-
anism of the processes.

The stabilities of falling liquid films were com-
prehensively investigated widely in past decades. Accord-
ing to the theory of stability the falling films are unstable
at any Reynolds number [6]. For very large Reynolds
numbers (Re > 1000), the waves on falling films are of
shear-waves with wavelengths comparable to or shorter
than average film thickness. The interfacial dynamics
would be dominated by the internal turbulence [7, 8].
At a moderate Reynolds number 1 < Re < 1000, long
interfacial waves of gravity—capillary instabilities appear
[9]. Wave patterns near the inception line vary with
different Reynolds numbers. The two-dimensional reg-
ular wave regimes are usually observed at Re ~ 5-20 near
the wave inception line. In other cases, the film waves are
three-dimensional and irregular [10]. The characteristics
of falling liquid films are mainly described by the Rey-
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nolds number which scales the ratio between inertia force
and viscous force.

However, experimental results showed that flow pat-
terns of falling liquid films are considerably complex [11]
and the recent experiments [5] reveal that thermal con-
ditions of a vertical wall have significant effects on inter-
facial waves.

We found [12] that the thermal non-equilibrium within
liquid films might have an important effect on falling
liquid films and hence, proposed to take Ra as an impor-
tant parameter. In the present paper, singular theory was
used to analyze the flow pattern evolution of falling liquid
films along a heated vertical flat wall. The aim is to exhibit
the role of thermal non-equilibrium on the stabilities of
falling liquid films.

2. Theoretical considerations
2.1. Mathematical model

The governing equations for falling liquid films, shown
in Fig. 1, are [12]

OP*  O(WP*, V2¥P*) 00*
2 N P _ PrViWyx —
e . 2%) Prax*—l—RaPr Prv*¥ 0
()

V20* =0 )

@ O(W*, 0%) oy*
or* - o(x*,z¥%) Tox —
where the dimensionless stream function is defined as

W* = W/o, in which W is a stream function and o is
thermal diffusivity of liquid. 0* is a dimensionless tem-
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Fig. 1. Physical model for analysis.

perature, defined as 0* = 0/[oav/gfd’], in which 0 is a
temperature departure from the average value, J is an
average film thickness, f and v are the coefficients of
volume expansion and kinetic viscosity of liquid, re-
spectively, g is the gravity acceleration, ¢* is the dimen-
sionless time scale, r* = 1/[6*/a], x* = x/6 and z* = z/d
are dimensionless coordinates.

Here, Pr = v/a and Ra = gp5°AT,/o? are considered as
the independent parameters in the present model. Gen-
erally, Pr could be taken as a constant for a given liquid.
Hence, Ra is the principal parameter to reveal the effect
of thermal non-equilibrium on the evolution of falling
films.

The above-mentioned analytical model is analogous to
that of Saltzman [13]. Lorenz [14] reduced the analytical
model of Saltzman [13] to a group of finite dimensional
non-linear equations and solved numerically to explore
the flow pattern evolution with Ra, varied from simple
periodic flow to complex periodic flow and finally to
chaotic flow. The method proposed by Lorenz [14] was
employed to analyze falling liquid films in this paper.

2.2. Reduction of equation

In equation (1), the fourth term on the left, Ra Pr,
would be a constant, for a given falling liquid film and
can be eliminated by differentiating the equation with
respect to x*. As a result, equation (1) could be reduced
to

i QPEO(PE,VEPE) 0%
(,}X*( 2 61* 7&(}(*72*) —Prﬁ—PrV“‘P* =0.

(©)

Referring to Saltzman [13], the stream function ¥* and
temperature 0* can be represented as a sum of double-
Fourier components. For turbulence, small wave num-
bers and big scale vortices play the principal role in the
formation and transfer of turbulent energy and Reynolds
shear stress. It is reasonable to expect that big vortices
play the main role in the evolution of falling liquid films.
Therefore, ¥* and 6* can be truncated under low dimen-
sion by referring to Lorenz’s investigation [14]. We obtain

o k * 1 * 1 *
ot J2X(1%) sin(nx*) sin(onz*) )
T g = /2Y(*) cos(nx*) sin(onz¥)
(1+06%)*n?
—Z(*) sinQonz*)  (5)
where o = J/L.

Substitute equations (4) and (5) into equations (3) and
(2). Omitting the trigonometric terms other than those
occurring in (4) and (5), we obtain
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dXx

——=—PrX+PrY

dz

dY

—=uX-Y-XZ

dt

dz

Fr —bZ+XY 6)

where 1= n*(1+06)r*. b=4c/(1+0%), n= Ra/Ra,.
Ra, = t*(1+6%)’/o.

3. Singular analysis

Water was chosen as a working fluid, with Pr = 7.0.
As the wave thickness is comparable to the wavelength
[9], the ratio of the average film thickness to the wave-
length can reasonably be chosen as ¢ = 0.707(¢* = 1/2
[14]). This results in Ra. = 465. Referring to Ott [15],
equation (6) has three positive steady states. They are

O(X()a YO,ZO) = (Oa 05 0)

P (Xpe, Yoo, Zp-) = (Jbn—1), /b(n—1),n—1)

n>1)
P (Xp,Yp ,Zp) = (—/b(n—1), —/b(n—1),n—1)
(n<1. (7

Pr and b will be constants for a given falling liquid
film. So, the behavior of the system could be examined
by changing the value of n. The stability of the steady
state O is given by the eigenvalues of the Jacobian matrix

—Pr  Pr 0
Ji=| n -1 0
0 0 —b

The eigenvalue equation would be
(S+D)[S*+ (Pr+1)S+Pr(1—pw)] = 0. (8)

The three roots of equation (8) are
S, =-b
Sy = [~ (Pr+1)+./(Pr+1)>—4 Pr(1—n)]
Sy =~ (Pr+1)—/(Pr+1)>—4 Pr(1—n)] )

S1, S, and S; are all negative for 0 < n < 1, which indi-
cates the stead state O being the only attractor of the
system. As n passes through 1, S, becomes positive with
the other two remaining negative. This indicates that
O has a two-dimensional stable manifold and a one-
dimensional unstable manifold. Along with the loss of
stability of O, the two fixed points P* and P~ are born.
The Jacobian matrix of point P* and P~ is

—Pr Pr 0

1 -1 FJ/bn—1)

+/b(n—1) £ /bn—1) —b

J, =

and accordingly, the equivalent eigenvalue equation
would be

S3+(Pr+b+1)S? +b(Pr+n)S+2b Pr(n—1). (10)
Obviously, all coeflicients of the eigenvalue equation are
positive when n > 1. Equation (10) must have a negative
root and the other two roots are negative if

S+ <0

P4
277 4

1
p = b(n+Pr)— g(Pr-i-b-i- 1)?
b
q=2bPr(n—1)— g(,u-i-Pr)(Pr—l—b—l— 1)

1 3
+ 5 (Prb+ 1), (11)

From equation (11), we have n < n; = 1.255. Hence, the
states P* and P~ are stable under the condition
1 <n < 1.255 and thereby become the attractors of the
system. Following the unstable manifold of O, it goes to
the steady state of P* and P~. As n increases further,
two negative eigenvalues of P* and P~ coalesce and
become complex conjugate eigenvalues with negative real
parts. In this regime, orbits approach P* and P~ by
spiraling around them.

If n is slightly greater than n,, equation (10) has a
negative eigenvalue and a couple of complex conjugate
eigenvalues

S, <0, S,=8,+iS;, and S;=3S,—iS;

where the real part, S, < 0. Hence, P* and P~ become a
stable focus. The eigenvalue equation can be written as

(S§—=S¢)(S—S,—iS)(S—S,+1iS;) = 0. (12)

Rearranging, it yields

S?—(Se+2S,)S*+(2S,S,+S7+S7)S
—So(SF+S7)=0. (13)

Comparing the coefficients of equations (13) and (10),
we have

Prab+1= —(S,+25,)
b(n+Pr)=25,S,+S?+S?

2bPr(n—1) = —S,(S?+S7). (14)
When S, = 0, the following expressions were derived
Pr(Pr+b+3)
, = ——— =20.22
= Pr—b—1 0
oS, b(Pr—b—1
, (Pr—b—1) s

|y 20b(ny+b)+ (Pr+b+ D]

That is, increasing 7 still further, the steady states P* and
P~ become unstable at n = n, = 20.22 for the real parts
of their complex conjugate eigenvalues pass from nega-
tive to positive (a Hopf bifurcation). P* and P~ become
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unstable through stable. As n increases further through
n,, the system gets into a chaotic regime. There is only
one chaotic attractor. The orbits around P* and P~
behave irregularly to form a local unstable but intact
stable chaotic attractor.

4. Numerical integration

The behavior of the manifold of O, P™ and P~ has
been discussed analytically above, that is as n is greater
than n = 20.22, the system becomes chaotic. As an exam-
ple, to illustrate the chaotic orbits, a numerical inte-
gration procedure was employed to solve the non-linear
equation (6) under the condition n = 21 for water. Using
the Runge—Kutta procedure, the dimensionless time
increment Ar* is equal to 0.01. The initial conditions were
chosen as a slight departure from the steady state of no
attraction, namely (0,1,0) and (0, —1,0). The number
of iteration was chosen as 3000. The coordinate of the
two steady states P* and P~ are (6.1410, 6.1410, 20) and
(—6.1410, —6.1410, 20), respectively. The instability of
the system is evident. Figure 2 shows the trajectory in
phase space corresponding to iterations 1-3000. All three
variables grow rapidly at first and then move around
the attractor with irregular orbits. If the initial point is
(0,1, 0), the point (X, Y, Z) quickly approaches the steady
state P~ (—6.1410, —6.1410, 20) and then moves around
P~. The motion of the point (X, Y, Z) is spiral and irregu-
lar. Evidently, the state P~ is the chaotic attractor under
this condition. If the initial point is (0, — 1, 0), the point
(X,Y,Z) similarly goes to the steady state P*
(6.1410,6.1410,20) soon and then moves around the
steady state. Figures 4 and 5 show the projections of the
trajectories on the x—y plane. The black area around
attractor PT or P~ indicates the chaotic motion of the
dynamic system. Obviously, the trajectory around P* is

Fig. 2. Trajectory of initial point (0, 1, 0).
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Fig. 3. Trajectory of initial point (0, —1,0).
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Fig. 4. Projection of the trajectory of (0, 1,0) on X-Y plane.
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Fig. 5. Projection of the trajectory of (0, —1,0) on X-Y plane.

the same with that around P~. They have the same physi-
cal significance.

The procedure proposed by Badii and Politi [16] was
adopted to calculate the fractal dimension of the chaotic
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system. For a system described by three first-order ordi-
nary differential equations, the attractor will be a line
and hence, of one dimension when the motion is periodic
and quasiperiodic motion made up of two non-harmonic
frequencies will form a two-dimensional torus. If the
process is one displaying deterministic chaos, the dimen-
sion of the attractor falls between two and three. On the
other hand, if the process is statistically random, then the
attractor will fill the entire phase space and its dimension
will be three.

The phase space is constituted by (X, Y, Z). According
to the nearest-neighbor method of Badii and Politi [16] a
set of N points of the attractor was chosen and a point x
on this attractor is arbitrarily selected as a reference
point. Choose at random a subset of k points denoted by
y; (i=1,2,...,k and kK < N) from the original set of N
points and consider the distance from x to each point y;,.
Define
D = min ||x—y;| (16)
D is the distance to the nearest neighbor. In order to
obtain a statistically useful value of the minimum
distance, calculation is repeated over many randomly
chosen reference points to obtain the average D,. The
process is then repeated for a sequence of k values up to
k = N—1 for each x. The number of nearest neighbors
contained in m-dimensional hypersphere of radius D
around a given point should vary as D if the attractor is
d-dimensional. It is argued that

D, ~ k=1 (17)
and hence,

. logk
d= —hmlog D, (18)

The negative, inverse slope of a log D, vs. log k plot is the
fractal dimension.

The calculated fractal dimension of the system under
the condition n =21 is 2.39. This means that as n is
greater than 20.22, the system gets into chaos. The result
is consistent with that of the above mentioned singular
analysis in Section 3.

5. Comparison with discussion

These projections are compared with that of the exper-
imental results, obtained by Lacy and Dulker [2] from a
measured film thickness time series. We realize that the
calculated trajectory is analogous to that from the exper-
iment.

The present results indicate that thermal non-equi-
librium has an important effect on stabilities of falling
liquid films, as we previously pointed out [12]. The exper-
imental results of Lyu and Mudawar [5] show that liquid
temperatures within films vary oppositely to the variation
of film thickness. For a given Reynolds number, the tem-

perature fluctuation increased monotonically as heat flux,
¢, was increased to steady-state values between 0 and
75000 W m~2 The effect of interfacial waves on liquid
temperature was most significant for Re < 5000 and less
noticeable for Re > 10000, even at heat fluxes in rela-
tively high values of 50000 W m™2 Probability density
distributions of film thickness are sensitive to heat fluxes
at relatively low Re (Re < 5000), but rather invariant
with heat fluxes for Re > 5000. Increasing heat flux also
enhances the relationship between thickness and tem-
perature. Lyu and Mudawar [5] commented on the role
of heat flux to falling liquid films. One suggestion is that
increasing the flux raises the liquid temperature, resulting
in a lower kinetic viscosity and consequently, a higher
Reynolds number. Another suggestion is that heating
could also affect the hydrodynamic structure of the inter-
facial waves due to the change in kinetic viscosity and
surface tension and so, the surface tension temperature
gradients. The experimental results indicate that the Rey-
nolds number is not the only dimensionless parameter
influencing the flow and heat transfer for falling liquid
films.

The present analysis shows that, as the Rayleigh num-
ber increases up to the critical point, Ra, = 465 for water,
the steady state of liquid film changes and converts to
another steady state. The corresponding flow patterns
convert from smooth form to wavy form. As the Ra
increases further, the simple wavy flow becomes complex
wavy flow. Eventually, as the Rayleigh number increases
up to 9400, the flow evolves into chaos. The analyses
clearly reveal that the Rayleigh number would be an
important parameter in falling liquid films.

Noting, for simplification of the problem, the gov-
erning equations were severely truncated and the high
wave number terms were neglected. It is not clear how
much the severe truncation will affect the analytical
results. Because of the effect of the high wave number
terms, the periodic wavy flow might not exist and be
replaced by quasiperiodic wavy flow. Further, the ther-
mocapillarity and evaporation on the free interface were
not taken into account. We know thermocapillarity is an
important destabilizing factor. It makes wavy films more
distorted and irregular. Hence, the value of the practical
critical Rayleigh number might be different from that of
the analytical result for the influence. Further exper-
imental and theoretical works will be needed.

6. Conclusion

Conclusions reached can be summarized as:

(1) the thermal non-equilibrium should play an import-
ant role in falling liquid films;
(2) the Rayleigh number might be a principal dimen-
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sionless parameter in falling liquid films along a
heated vertical flat wall;

(3) flow patterns of falling liquid films vary with changes
of the Rayleigh number;

(4) further experimental and theoretical investigations
are urgently needed.
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